DIRETORIA DE ENSINO DEPARTAMENTO DE QUÍMICA E MEIO AMBIENTE COORDENAÇÃO DO CST EM PROCESSOS QUÍMICOS

PROGRAMA DE UNIDADE DIDÁTICA - PUD

(continua)

DISCIPLINA: TÓPICOS EM FÍSICO-QUÍMICA (OPTATIVA)				
Código: TPQ060	Carga horária total: 40 h	Créditos: 02		
Nível: Graduação	Semestre: 5	Pré-requisitos: TPQ015		
CARGA HORÁRIA:	Teórica: 40 h	Prática: -		
	Prática profissional: -	Extensão: -		
	Presencial: 40 aulas	Distância: -		
	Atividades não presenciais: 8 aulas			

EMENTA

Fundamentos de físico-química. Termodinâmica Estatística. Aplicações da físico-química a áreas específicas do conhecimento: novos materiais, energias alternativas, sistemas ambientais, química coloidal; fenômenos interfaciais e de superfície.

OBJETIVO

Compreender e aplicar conceitos e tecnologias industriais atuais e inovadoras relacionadas à físico-química dos fenômenos de superficie e outros assuntos de interesse tecnológico.

PROGRAMA C/H

Unidade 1 – Leis da termodinâmica: conceitos e princípios básicos de Físico-Química; abordagens clássica e não clássica das leis da termodinâmica; termodinâmica estatística; ciclos termodinâmicos (Carnot, Diesel e Otto); entropia e 12 h probabilidade; relações de Maxwell; a energia livre de Gibbs de uma mistura; a equação de Gibbs-Duhem; aplicações em energias renováveis.

Unidade 2 – Equilíbrios em sistemas de vários componentes: soluções ideais e não-ideais; lei de Henry; equilíbrio de fases condensadas; adsorção; estado coloidal; 10 h líquidos iônicos e aplicações industriais.

Unidade 3 – Estado sólido: conceituação e tipos de sólidos; cristais e células unitárias; fatores de empacotamento; índices de Miller; lei de Bragg; energias reticulares; teoria das bandas (condutores e semicondutores). Materiais semicondutores e aplicações.

Unidade 4 – Cinética e reações complexas: reações em cadeia e reações oscilantes; explosões; reações fotoquímicas; polimerização.

DIRETORIA DE ENSINO DEPARTAMENTO DE QUÍMICA E MEIO AMBIENTE COORDENAÇÃO DO CST EM PROCESSOS QUÍMICOS

(conclusão)

METODOLOGIA DE ENSINO

Exposição do conteúdo utilizando o método expositivo-demonstrativo, listas de exercícios e resolução de atividades em sala, trabalhos em equipe e ou discussões em grupo, utilização de multimídia e projeção de slides.

RECURSOS

Sala de aula, pincel e quadro branco, computador com internet, projetor, tela de projeção.

AVALIAÇÃO

A avaliação será desenvolvida, de forma processual e contínua, ponderando os aspectos qualitativos e quantitativos das competências desenvolvidas pelos alunos, tais como: trabalho em equipe, participação nas atividades propostas, bem como por meio de trabalhos e provas escritas (objetivas e ou subjetivas) dos conteúdos abordados na disciplina. As atividades de avaliação poderão contemplar as atividades não presenciais, entretanto, as atividades não presenciais não são consideradas pelo docente para controle de frequência.

BIBLIOGRAFIA BÁSICA

ASHCROFT, N. W.; MERMIN, N. D. **Física do estado sólido**. São Paulo: Cengage Learning, 2011.

ATKINS, P.; PAULA, J. Físico-química, v. 2. 8ª ed. Rio de Janeiro: LTC, 2008.

ATKINS, P.; PAULA, J. Físico-química, v. 3. 7^a ed. Rio de Janeiro: LTC, 2004.

ROUQUEROL, F.; ROUQUEROL, K. S. W.; SING, P. L.; MAURIN, G. Adsorption by powders and porous solids: principles methodology and applications. 2^a ed. Oxford: Academic Press, 2014.

SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M. Introdução à Termodinâmica da Engenharia Química. 5ª ed. Rio de Janeiro: LTC, 2000.

BIBLIOGRAFIA COMPLEMENTAR

BRAGA, J. P. **Termodinâmica estatística de átomos e moléculas**. São Paulo: Livraria da Física, 2013.

CALLEN, H. B. **Thermodynamics and an introduction to thermostatistics**. 2^a ed. New York: John Wiley & Sons, 1985.

INGLEZAKIS, V. J.; POULOPOULOS, S. G. Adsorption, ion exchange and catalysis: design of operations and environmental applications. Oxford: Elsevier, 2006.

NASCIMENTO, R. F.; LIMA, A. C. A.; VIDAL, C. B.; MELO, D. Q.; RAULINO, G. S. C. Adsorção: aspectos teóricos e aplicações ambientais. Fortaleza: UFC, 2014.

TERRON, L. R. Termodinâmica química aplicada. Barueri: Manole, 2009.

Coord	lenação	do	Curso: