

DIRETORIA DE ENSINO DEPARTAMENTO DE QUÍMICA E MEIO AMBIENTE COORDENAÇÃO DO CST EM PROCESSOS QUÍMICOS

PROGRAMA DE UNIDADE DIDÁTICA - PUD

(continua)

DISCIPLINA: QUÍMICA ORGÂNICA II		
Código: TPQ022	Carga horária total: 80 h	Créditos: 04
Nível: Graduação	Semestre: 4	Pré-requisitos: TPQ016
CARGA HORÁRIA:	Teórica: 70 h	Prática: 10 h
	Prática profissional: -	Extensão: -
	Presencial: 80 aulas	Distância: -
	Atividades não presenciais	: 16 aulas

EMENTA

Fundamentos de reações orgânicas. Reações em carbonos: insaturados, aromáticos e saturados. Reações de compostos oxigenados: álcoois e fenóis; éteres; aldeídos e cetonas; ácidos carboxílicos e derivados.

OBJETIVOS

os fundamentos e principais mecanismos Compreender das reacões orgânicas, particularmente de hidrocarbonetos e compostos orgânicos oxigenados.

PROGRAMA C/H

Programa Teórico:

Unidade 1 – Fundamentos de reações orgânicas: Conceitos; homólise e heterólise; intermediários e reatividade – carbocátions, carbânions e radicais livres; eletrófilos e nucleófilos; efeitos eletrônicos - efeito indutivo, efeito mesomérico e estabilidade de intermediários; classificação de reações – adição, substituição e eliminação.

06

Unidade 2 - Reações de hidrocarbonetos insaturados: hidrogenação; adição de ácidos próticos; regra de Markownikov; reações de adição iônica a alcenos, alcinos e compostos relacionados; halogenação; adição de radicais livres; oxidação exaustiva e branda de alcenos; combustão.

18

Unidade 3 – Reações de compostos aromáticos: reações do benzeno e de seus derivados – nitração, sulfonação, halogenação, acilação e alquilação; grupos ativantes e desativantes da substituição eletrofílica.

08

Unidade 4 – Reações de substituição e eliminação em carbonos saturados: substituição SN1 e SN2; principais características de reações SN1 e SN2; polarizabilidade; uso de solventes; grupos abandonadores.

18

Unidade 5 - Reações de álcoois, fenóis e éteres: principais reações em álcoois; formação de alcóxidos, fenóxidos e éteres; oxidação de álcoois; desidratação e 12 conversão de álcoois a éteres e a alcenos; outras reações.

08

Unidade 6 – Reações de aldeídos e cetonas: reatividade, adição de água e álcool; reação com derivados de amônia; reações com compostos de Grignard; condensação aldólica; reações de identificação de compostos carbonílicos; oxidações e reduções de carbonilas.

DIRETORIA DE ENSINO DEPARTAMENTO DE QUÍMICA E MEIO AMBIENTE COORDENAÇÃO DO CST EM PROCESSOS QUÍMICOS

(continuação)

C/H

PROGRAMA (CONT.)

Unidade 7 – Reações de ácidos carboxílicos e derivados: reações ácido-base, reatividade de ácidos e derivados frente a nucleófilos, hidrólise de derivados de ácidos 08 em meio ácido e meio básico; esterificação de Fischer; saponificação.

Programa Prático:

- **Aula Prática 1 Reações orgânicas I:** conduzir experimento para síntese de compostos orgânicos a partir da reação de hidrocarbonetos alifáticos.
- **Aula Prática 2 Reações orgânicas II:** conduzir experimento para síntese de compostos orgânicos a partir da reação de hidrocarbonetos aromáticos.
- **Aula Prática 3 Reações orgânicas III:** conduzir experimento para síntese de compostos orgânicos a partir da reação de compostos orgânicos oxigenados.
- **Aula Prática 4 A critério do professor:** aula prática a critério do professor abordando os conteúdos da disciplina ou visita técnica a laboratório industrial.
- **Aula Prática 5 A critério do professor:** aula prática a critério do professor abordando os conteúdos da disciplina ou visita técnica a laboratório industrial.

METODOLOGIA DE ENSINO

Exposição do conteúdo teórico e prático por meio do método expositivo-dialógicas, com resolução de exercícios, atividades em grupo, e uso de kit de modelos atômicos, além de aulas práticas em laboratório de química ou de tecnologia química e ou aulas em laboratório virtual. Algumas atividades e conteúdos serão trabalhados nas aulas não presenciais, preferencialmente aquelas de menor complexidade, como leitura de textos, preparação e elaboração de documentos, resolução de listas de exercícios, entre outros, com a adequada orientação e acompanhamento pelo docente responsável pela disciplina.

RECURSOS

Sala de aula, pincel e quadro branco, computador, projetor, tela de projeção, kit de modelos atômicos, laboratório de química ou de tecnologia química equipado, laboratório de informática com laboratório virtual.

AVALIAÇÃO

A avaliação será desenvolvida, de forma processual e contínua, ponderando os aspectos qualitativos e quantitativos das competências desenvolvidas pelos alunos, tais como: trabalho em equipe, participação nas atividades propostas, bem como por meio de relatórios de aulas práticas, trabalhos, provas escritas (objetivas e ou subjetivas) tratando dos conteúdos e atividades abordadas na disciplina. As atividades de avaliação poderão contemplar as atividades não presenciais, entretanto, as atividades não presenciais não são consideradas pelo docente para controle de frequência.

DIRETORIA DE ENSINO DEPARTAMENTO DE QUÍMICA E MEIO AMBIENTE COORDENAÇÃO DO CST EM PROCESSOS QUÍMICOS

(conclusão)

BIBLIOGRAFIA BÁSICA

BARBOSA, L. C. A. Introdução à química orgânica. 2ª ed. São Paulo: Pearson Prentice Hall, 2011.

BRUICE, P. Y. **Fundamentos de química orgânica com Virtual Lab**. 2ª ed. São Paulo: Pearson Education do Brasil, 2014.

MCMURRY, J. Química orgânica, v.1 e v. 2. São Paulo: Cengage Learning, 2011.

SOLOMONS, T. W. G.; FRYHLE, C. B.; SNYDER, S. A. **Química orgânica**, v. 1. e v. 2. 12^a ed. Rio de Janeiro: LTC, 2021.

BIBLIOGRAFIA COMPLEMENTAR

ALLINGER, N. L.; CAVA, M. P.; JONGH, D. C.; JOHNSON, C. R.; LEBEL, N. A.; STEVENS, C. L. **Química orgânica**. 2ª ed. Rio de Janeiro: Guanabara Dois, 1978.

GARCIA, C. F. **Química orgânica: estrutura e propriedades**. Porto Alegre: Bookman, 2015.

KLEIN, D. Química Orgânica. v.1 e v. 2, 2ª ed. Rio de Janeiro: LTC, 2016.

BARROS NETO, B.; SCARMINIO, I. S.; BRUNS, R. E. Como fazer experimentos: pesquisa e desenvolvimento na ciência e na indústria. 4ª ed. Porto Alegre: Bookman, 2010.

BRADY, J. E.; SENESE, F. Química: a matéria e suas transformações. v. 1 e v. 2. 5ª ed. Rio de Janeiro: LTC, 2009.

Coordenação do Curso:		