DIRETORIA DE ENSINO DEPARTAMENTO DE QUÍMICA E MEIO AMBIENTE COORDENAÇÃO DO CST EM PROCESSOS QUÍMICOS

PROGRAMA DE UNIDADE DIDÁTICA - PUD

(continua)

DISCIPLINA: QUÍMICA GERAL			
Código: TPQ003	Carga horária total: 80 h	Créditos: 04	
Nível: Graduação	Semestre: 1	Pré-requisitos: Não há	
CARGA HORÁRIA:	Teórica: 80 h	Prática: -	
	Prática profissional: -	Extensão: -	
	Presencial: 80 aulas	Distância: -	
	Atividades não presenciais: 16 aulas		

EMENTA

Conceitos básicos de química. Estrutura atômica da matéria. Classificação periódica dos elementos químicos. Ligações químicas e geometria molecular. Funções inorgânicas. Reações e cálculos estequiométricos. Soluções. Materiais modernos. Ouímica ambiental.

OBJETIVO

Compreender e aplicar os fundamentos e teorias básicas da Química em problemas cotidianos e industriais.

PROGRAMA C/H

Unidade 1 – Conceitos básicos de Química: matéria e energia; estados da matéria; elementos e compostos; substâncias puras e misturas; transformações físicas e químicas; medidas e unidades de medida do SI; partículas fundamentais da matéria; modelo nuclear do átomo – números atômicos, números de massa, isótopos; massas atômicas; estrutura eletrônica dos átomos – comportamento ondulatório da matéria e o princípio da incerteza, orbitais atômicos e números quânticos – princípios e regras; configuração eletrônica; íons; tabela periódica moderna – metais e não metais, o hidrogênio, elementos do bloco s, elementos do bloco p, elementos de transição e de transição interna; propriedades periódicas – tamanho, energia de ionização, afinidade eletrônica, eletronegatividade.

16 h

Unidade 2 – Ligações químicas: elétrons de valência e regra do octeto; ligação iônica ou eletrovalente – formação de íons e energia de rede, configuração eletrônica de íons dos blocos s e p, íons de metais de transição; ligação covalente ou molecular – formação, estruturas de Lewis, eletronegatividade e polaridade de ligações, momentos de dipolo, carga formal, exceções à regra do octeto, força e comprimento das ligações; geometria e polaridade molecular – modelo VSEPR, sobreposição orbital, orbitais híbridos, ligações múltiplas e estruturas ressonantes; ligações metálicas – modelo do mar de elétrons e teoria das bandas; forças e ligações intermoleculares – forças de dispersão, dipolo-dipolo, íon-dipolo e ligações de hidrogênio; estrutura cristalina, célula unitária e ligação em cristais; defeitos em sólidos.

16 h

DIRETORIA DE ENSINO DEPARTAMENTO DE QUÍMICA E MEIO AMBIENTE COORDENAÇÃO DO CST EM PROCESSOS QUÍMICOS

(continuação)

PROGRAMA (CONT.)	C/H
Unidade 3 – Reações e estequiometria: fórmulas químicas – fórmula mínima, molecular e estrutural; massa molecular, quantidade de matéria (mol) e massa molar; reações químicas e balanceamento (método por tentativa); leis ponderais; cálculos estequiométricos; reagente em excesso e limitante; pureza e rendimento.	14 h
Unidade 4 – Soluções: Dispersão e classificação das soluções; processo de dissolução; coeficiente de solubilidade; formas usuais de expressar a concentração de uma solução; diluição e mistura de soluções; reações em solução aquosa; titrimetria (volumetria).	12 h
Unidade 5 – Compostos inorgânicos: ácidos e bases – dissociação em água e classificação de Arrhenius, classificação de Brønsted-Lowry, classificação de Lewis, grau de dissociação e força de ácidos e bases; autoionização da água; reações de neutralização e a formação de sais; hidrólise de sais; eletrólitos fortes e fracos; autoionização da água e a escala de pH e pOH; solução tampão; óxidos – conceituação e classificação; materiais modernos - semicondutores, vidros, cerâmicas, polímeros e nanomateriais.	
Unidade 6 – Fundamentos de Química Ambiental: atmosfera terrestre – composição, reações fotoquímicas, camada de ozônio e sua redução, compostos de enxofre e chuva ácida, óxidos de nitrogênio e smog fotoquímico, gases de efeito estufa; água na Terra – ciclo hidrológico, oceanos e mares, água doce e lençóis freáticos, oxigênio dissolvido e qualidade de água.	08 h

METODOLOGIA DE ENSINO

Exposição do conteúdo por meio do método expositivo-demonstrativo, devendo-se utilizar trabalhos em equipe e ou discussões em grupo, ou ainda o uso de plataformas online de vídeos e gamificação na consolidação na consolidação da aprendizagem dos discentes. Ressalte-se que os conteúdos aqui trabalhados serão reforçados no âmbito experimental na disciplina de Química Experimental do curso. Algumas atividades e conteúdos serão trabalhados nas aulas não presenciais, preferencialmente aquelas de menor complexidade, como leitura de textos, preparação e elaboração de documentos, resolução de listas de exercícios, entre outros, com a adequada orientação e acompanhamento pelo docente responsável pela disciplina.

RECURSOS

Sala de aula e ou laboratório de informática, pincel e quadro branco, computador, projetor, tela de projeção, conjunto de kit de modelo molecular e ou jogos didáticos e lúdicos.

AVALIAÇÃO

A avaliação será desenvolvida, de forma processual e contínua, ponderando os aspectos qualitativos e quantitativos das competências desenvolvidas pelos alunos, tais como: trabalho em equipe, participação nas atividades propostas, trabalhos e provas escritas (objetivas e ou subjetivas) tratando dos conteúdos abordados na disciplina. As atividades de avaliação poderão contemplar as atividades não presenciais, entretanto, as atividades não presenciais não são consideradas pelo docente para controle de frequência.

DIRETORIA DE ENSINO DEPARTAMENTO DE QUÍMICA E MEIO AMBIENTE COORDENAÇÃO DO CST EM PROCESSOS QUÍMICOS

(continuação)

BIBLIOGRAFIA BÁSICA

BRADY, J. E.; SENESE, F. Química: a matéria e suas transformações. v. 1 e v. 2. 5ª ed. Rio de Janeiro: LTC, 2011.

BROWN, T. L.; LEMAY JR., H. E.; BURSTEN, B. E.; BURDGE, J. R. Química: a ciência central. 13^a ed. São Paulo: Pearson Prentice Hall, 2016.

CHANG, R. Química geral: conceitos essenciais. 4ª ed. Porto Alegre: AMGH, 2013.

KOTZ, J. C.; TREICHEL JUNIOR, P. M.; WEAVER, G. C. Química geral e reações químicas. v.1. São Paulo: Cengage Learning, 2014.

REIS, E. L. (Org.). Química Geral: práticas fundamentais. 2ª ed. Viçosa, MG: UFV, 2016.

RUSSELL, J. B. Química Geral. v. 1. e v. 2. 2ª ed. São Paulo: Makron Books, 2004.

SPIRO, T. G.; STIGLIANI, W. M. Química ambiental. 2ª ed. São Paulo: Pearson, 2009.

BIBLIOGRAFIA COMPLEMENTAR

ATKINS, P.; JONES, L. Princípios de química: questionando a vida moderna e o meio ambiente. 3.ed. Porto Alegre: Bookman, 2007.

BAIRD, C. Química ambiental. 2.ed. Porto Alegre: Bookman, 2004.

HILSDORF, J. W.; BARROS, N. D.; TASSINARI, C. A.; COSTA, I. **Química tecnológica**. São Paulo: Cengage Learning, 2010.

MAHAN, B. M.; MYERS, R. J. **Química: um curso universitário**. São Paulo: Edgard Blücher, 2003.

MASTERTON, W. L.; SLOWINSKI, E. J.; STANITSKI, C. L. **Princípios de química**. 6ª ed. Rio de Janeiro: Guanabara Koogan, 1990.

ROCHA, J. C.; ROSA, A. H.; CARDOSO, A. A. **Introdução à química ambiental**. Porto Alegre: Bookman, 2006.

ROZENBERG, I. M. Química geral. São Paulo, SP: Edgard Blücher, 2002.

SLABAUGH, W.H.; PARSONS, T. D. Química Geral. 2ª ed. Rio de Janeiro: LTC, 1982.

Coordenação do Curso:

117