CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DO CEARÁ DIRETORIA DE ENSINO GERÊNCIA DE LICENCIATURAS, ENSINO MÉDIO E DESPORTO E LAZER DISCIPLINA Física Contemporânea

PLANO DE DISCIPLINA

CURSO	SEMESTRE	CARGA HORARIA				
LICENCIATURA PLENA EM FÍSICA	VII	80H				
PROFESSOR(A)		PRÉ-REQUISITOS				
Márcio André de Melo Gomes		Tópicos de Matemática Aplicada à Física				
Introdução à Física Atômica;Introdução à Física do Estado Sólido;Introdução à Física Nuclear;Introdução à Física de Partículas.						
VISTO:						
Coordenação técnico-pedagógica:		// //				

OBJETIVOS:

- Aplicar a equação de Schrodinger à compreensão do átomo de hidrogênio e outros átomos mais simples.
- Dominar a importante ferramenta da Física Estatística,como elemento de descrição de uma realidade de múltiplos eventos e como elemento estrutural da Mecânica Quântica.
- Aplicar a teoria quântica ao estudo de algumas propriedades da matéria no estado sólido.
- A partir das teorias estudadas em Física Moderna, a saber, Relatividade Restrita e Mecânica Quântica, desenvolver as teorias que descrevem o comportamento das partículas em geral e a atividade do núcleo atômico.
- Desenvolver uma visão geral de como a física do século XX transformou a visão de mundo e a vida da raça humana,com eventuais benefícios e prejuízos,ou seja identificar o papel sócio-econômico-filosófico da ciência.

COMPETÊNCIAS/ HABILIDADES	BASES TECNOLÓGICAS	
• Interpretar as funções de onda para o átomo de	1.Física Atômica	
Hidrogênio.	1.1 O átomo de hidrogênio.	
• Desenvolver a relação entre momento angular e	1.2 Relação entre momento angular e momento magnético.	
momento magnético pelo modelo de Bohr.	1.3 Experimento de Stern-Gerlach,o spin do elétron e o princípio da	
• Estender tal relação para o spin do elétron.	Exclusão.	
• Aplicar a equação de Schrodinger ao átomo de	1.4Efeitos Zeeman Normal e Anômalo.	
hidrogênio e átomos com vários elétrons.	1.5Espectro de Átomos com muitos elétrons.	
• Conhecer a distribuição estatística de Maxwell-	2.Física Estatística.	
Boltzmann e as distribuições quânticas de Bose-Einstein e	2.1Estatística Clássica.	
Fermi-Dirac e as situações e sistemas nos quais são aplicadas.	2.2Estatística Quântica.	
• Caracterizar ligações iônicas, covalentes e dipolo-dipolo.	3.Estrutura e Espectro das Moléculos	
• Relacionar os espectros de energia moleculares aos		
modos rotacionais e vibracionais da molécula.	3.2Níveis de energia e espectro de ligações diatômicas.	
• Diferenciar os diversos tipos de espalhamento de um	3.3Laser.	
fóton por um átomo:Rayleigh,Raman e compton.	4.Física do Estado Sólido	
• Compreender o princípio de funcionamento de um laser.	4.1Estrutura dos Sólidos	

	~ ·	/10 1	• ^ •	T 4
• (Caracterizar	solidos	ionicos e	e covalentes.

- Desenvolver as teorias clássica e quÂntica para a calor nos sólidos. condução de eletricidade e calor nos sólidos.
- Conhecer as propriedades e aplicabilidades semicondutores e supercondutores.
- **Descrever** quantitativa qualitativamente propriedades do núcleo atômico, o fenômeno da radioatividade 5.10 núcleo e suas propriedades no estado fundamental. e as características da força nuclear.
- Classificar as partículas e interações fundamentais da 5.3Decaimentos natureza.
- Capacitar-se para a resolução de qualquer situação- 5.5 O modelo das camadas problema pertinente ao conteúdo abordado.

4.2Teoria clássica para condução de eletricidade e condução de

4.3Teoria quântica da condução de eletricidade e calor nos sólidos.

dos 4.4Semicondutores.

4.5Supercondutividade.

as | 5.Física Nuclear

5.2Radioatividade.

5.4 A força nuclear

6.Física de partículas

6.1Partículas e antipartículas.

6.2Interações fundamentais e a classificação das partículas.

6.3Leis de conservação.

6.4 O Modelo Padrão.

PROCEDIMENTOS METODOLÓGICOS	RECURSOS DIDÁTICOS	AVALIAÇÃO
 Aulas expositivas com resolução de exercícios. Aulas de resolução de exercícios pelos alunos no quadro,orientados pelo professor. Trabalhos individuais(listas de exercícios) 	 Quadro branco,pincel,apagador. Notebook. Projetor LCD. 	 Participação. Provas. Listas de exercícios(a critério do professor). Nota por trabalho de pesquisa(a

• Trabalhos de pesquisa em artigos	critério do professor).
científicos.	

INDICAÇÕES BIBLIOGRÁFICAS

- TIPLER, P.A.; LLEWELLYN, R.A. Física Moderna, LTC Editora, Rio de Janeiro, 2001, 515 p.
- HALLIDAY,D.;RESNICK,R.;WALKER,J.Fundamentos de Física 4, LTC Editora,Rio de Janeiro,1995,354p.
- SERWAY,R.A Física 4,LTC Editora,Rio de Janeiro,1996,287p.
- CHAVES, A. Física v. 4: Sistemas complexos e outars fronteiras, Reichmann & Afonso Editora, 2001, 240 p.
- EISBERG,R.M.;RESNICK,R.Física Quântica,Campus,Rio de Janeiro,1979,928p.
- NUSSENZVEIG,H.M Curso de Física Básica 4,Edgar Blücher,São Paulo,1998,437p.