PROGRAMA DE UNIDADE DIDÁTICA

DISCIPLINA: Engenharia Assistida por Computador	
Código:	IND.031
Carga Horária Total: 80	CH Teórica: 56 CH Prática: 24
Número de Créditos:	4
Pré-requisitos: MECI014 - Desenho Assistido por Computador (S4) IND.027 - Sistemas Mecânicos (S5)	Constitui pré-requisitos para:
Semestre:	6
Nível:	Graduação

EMENTA

Conhecendo a teoria de resistência dos materiais, tais como: momento fletor, momento de inércia, forças cortantes, dentre outros e equações matriciais, aplicar os conceitos de Elementos Finitos e interpretar os resultados obtidos utilizando um software de CAE através do uso correto e adequado dos comandos desse aplicativo.

OBJETIVOS

Desenvolver os cálculos de uma estrutura mecânica através de modelos da natureza física do fenômeno que se propõe a resolver. Desenvolver projetos utilizando métodos numéricos que aproximam a estrutura analisada baseados em análise de Elementos Finitos. Interpretar e desenvolver equações matriciais no tocante a rigidez da estrutura. Analisar e aplicar carregamentos e restrições à estrutura analisada. Por meio de um software de CAE, simular e interpretar os resultados.

PROGRAMA

- UNIDADE I. Introdução ao Método dos Elementos Finitos.
- UNIDADE II. Elemento de Mola: Rigidez do elemento e Rigidez da Estrutura.
- UNIDADE III. Elemento de Treliça: Sistemas de Coordenadas Local e Global.
- UNIDADE IV. Elemento de Viga: Superposição de Comportamentos Independentes.
- UNIDADE V. Elementos Bidimensionais e Tridimensionais Aplicações Gerais.
- UNIDADE VI. Formulação Isoparamétrica e Complementos.
- UNIDADE VII. Uso de Software de CAE. Escolha do Tipo de Elemento. Aplicação das Cargas. Aplicação das Restrições. Propriedades do Material Analisado. Simulação dos esforços. Análise dos Resultados.

METODOLOGIA DE ENSINO

Aulas expositivas e explicativas. Execução de exercícios propostos em aula. Incentivo à pesquisa aplicada promovendo discussões sobre sobre aplicações e novas tecnologias.

RECURSOS

Quadro, pincéis, computador e projetor multimídia. Acesso à internet para consultas online.

AVALIAÇÃO

Acompanhamento e atendimento aos alunos na aplicação dos comandos do software de CAE

BIBLIOGRAFIA BÁSICA

ALVES FILHO, Avelino. **Elementos finitos:** a base da tecnologia CAE. 5.ed. São Paulo: Érica, 2008. 620.00151535 A474e

<u>CHANDRUPATLA</u>, Tirupathi R.; BELEGUNDU, Ashok D. **Elementos finitos.** São Paulo: Pearson Education do Brasil, 2014. [Biblioteca Virtual]

MELCONIAN, M. V. Modelagem numérica e computacional com similitude e elementos finitos.

São Paulo: Edgard Blucher. 2014. [Biblioteca Virtual]

JARLETTI, Celina. Cálculo numérico. Curitiba: Intersaberes, 2018. [Biblioteca Virtual]

PERIÓDICOS COMPLEMENTARES

Advances in Computational Design in Engineering. ISSN 2466-0523. Disponível em

http://www.techno-press.org/?journal=acd&subpage=5>

Computer-Aided Design & Applications. ISSN 1686-4360. Disponível em

https://www.tandfonline.com/loi/tcad20

Journal of Engineering. ISSN 0954-4828. Disponível em <https://www.tandfonline.com/loi/cjen20>

BIBLIOGRAFIA COMPLEMENTAR

MARINHO, Antonio Lopes. **Análise e modelagem de sistemas.** São Paulo: Pearson Education do Brasil, 2016. [Biblioteca Virtual]

<u>CAMPOS</u>, André L. N. **Modelagem de Processos com BPMN.** 2.Ed. Rio de Janeiro: Brasport, 2014. [Biblioteca Virtual]

<u>FRANCO</u>, Neide Maria Bertoldi. **Cálculo Numérico.** São Paulo: Pearson Education do Brasil, 2006. [Biblioteca Virtual]

VARGAS, José Viriato Coelho; ARAKI, Luciano Kiyoshi. **Cálculo numérico aplicado.** São Paulo: Manole, 2017. [Biblioteca Virtual]

<u>SPERANDIO</u>, Décio; MENDES, João Teixeira; SILVA, Luiz Henry Monken e. **Cálculo numérico.** 2.ed. São Paulo: Pearson Education do Brasil, 2014. [Biblioteca Virtual]

Revisão	Data
Geraldo Ramalho	18/05/2018
APROVADO PELO COLEGIADO EM 17/11/2021	
Coordenador do Curso	Setor Pedagógico
NOME DO COORDENADOR	NOME DO PEDAGOGO

Modelo r04, conforme Resolução no.099, de 27 de setembro de 2017