

PROGRAMA DE UNIDADE DIDÁTICA – PUD

DISCIPLINA: RESISTÊNCIA DOS MATERIAIS I

Código: 01.505.25

Carga Horária: 80

Número de Créditos: 04

Código pré-requisito: 01.505.21

Semestre: 05

Nível: Graduação

EMENTA

Tensões, Deformações. Análise de tensões e deformações. Tensões e deformações devido a solicitações simples: tração, compressão, cisalhamento, flexão e torção;

OBJETIVO

Estabelecer conceitos e formulações básicas para o conhecimento do comportamento mecânico de materiais, os quais estão associados à análise e ao projeto dos mais variados sistemas estruturais, para atender satisfatoriamente às solicitações de trabalho e às condições de uso a que são submetidos.

PROGRAMA

- 1. Apresentação da disciplina: objetivos, conceitos e hipóteses simplificadoras da resistência dos materiais. Revisão dos princípios básicos da mecânica;
- 2. Tensão: tensão normal média, tensão de cisalhamento média, tensões admissíveis, projeto de ligações simples;
- 3. Conceitos de deformação específica.
- 4. Propriedades mecânicas dos materiais: ensaio de tração e compressão, diagrama tensão-deformação, materiais dúcteis e frágeis, Lei de Hooke, energia de deformação, coeficiente de Poisson, diagrama tensão-deformação por cisalhamento, creep e fadiga;
- 5. Carga axial: princípio de Saint-Venant, deformação elástica, princípio da superposição de efeitos, elementos estaticamente indeterminados, método da força, tensões térmicas, concentração de tensões, deformação inelástica, tensões residuais;
- 6. Flexão: conceitos, relações entre carregamento, força cortante e momento fletor, diagramas de esforços internos, tensão e deformação em elementos de eixo reto (flexão pura), flexão não simétrica (flexão oblíqua), vigas compostas, tensão de cisalhamento na flexão (flexão simples). Fluxo de cisalhamento. Carregamento combinado: reservatórios de paredes finas, flexão composta e flexão com torção;
- 7. Torção: deformação em eixo circular, fórmula da torção, ângulo de torção, elementos estaticamente indeterminados, tubos de paredes finas;

METODOLOGIA DE ENSINO

A disciplina será ministrada através de aulas teóricas expositivas, acompanhadas da resolução de exercícios práticos. Será também desenvolvido um trabalho, com aplicação dos conceitos estudados.

AVALIAÇÃO

Avaliação escrita sobre os conteúdos ministrados, tendo como premissas o planejamento, organização e coerência de ideias em função do domínio dos conhecimentos científicos adquiridos.

BIBLIOGRAFIA BÁSICA

HIBBELER, R. C. **Resistência dos materiais.** 5.ed. São Paulo, SP: Pearson Prentice Hall, 2006. 670 p. ISBN 85-87918-67-2.

BEER, Ferdinand P.; JOHNSTON JR., E. Russell. **Resistência dos materiais.** 2.ed. São Paulo, SP: Makron Books do Brasil, 1982. 654 p. ISBN 85-346-0344-8.

NASH, William A. Resistência dos materiais. Rio de Janeiro, RJ: McGraw-Hill do Brasil, 1971. 384 p.

BIBLIOGRAFIA COMPLEMENTAR

ARRIVABENE, Wladimir. Resistência dos materiais. São Paulo, SP: Makron Books, 1994. 400 p.

CARVALHO, Miguel Scherpl de. **Resistência dos materiais.** Rio de Janeiro, RJ: EXPED, 1979. 385 p. ISBN 85-208-0001-7.

FREITAS NETO, José de Almendra; SPERANDIO JÚNIOR, Ernesto. **Exercícios de estática e resistência dos materiais.** 3.ed. Rio de Janeiro, RJ: Interciência, 1979. 473 p.

ROCHA, Aderson Moreira da. **Resistência dos materiais - v.1.** Rio de Janeiro, RJ: Científica, 1969. v. 1. 431 p.

TIMOSHENKO, Stephen P. **Resistência dos materiais - v.1.** Rio de Janeiro, RJ: Livro Técnico, 1966. v.1. ISBN 85-216-0201-4.

Coordenador do Curso	Setor Pedagógico