

PROGRAMA DE UNIDADE DIDÁTICA – PUD

DISCIPLINA: FÍSICA I

Código: 01.505.01

Carga Horária: 80

Número de Créditos: 04

Código pré-requisito:

Semestre: 01

Nível: Graduação

EMENTA

Medidas e sistemas de unidades; movimento em uma, duas e três dimensões; leis de Newton; trabalho e energia; conservação de energia; sistemas de partículas e conservação de momento; colisões; cinemática e dinâmica das rotações.

OBJETIVO

Conhecer os fundamentos da física e suas aplicações na engenharia civil.

PROGRAMA

Padrões de medida. Sistemas de Unidades Físicas. Movimento retilíneo uniforme. Movimento retilíneo uniformemente variado. Queda livre. Movimento no plano: lançamento de projétil, movimento circular uniforme. Leis de Newton. Forças da natureza: força peso, força normal, força de atrito e tensões. Aplicações das leis de Newton em problemas bidimensionais. Trabalho Energia cinética, Teorema trabalho-energia. Energia Potencial. Conservação de energia. Centro de massa. Momento linear. Colisões. Conservação do momento linear. Cinemática de rotação. Momento de uma força. Momento angular. Conservação do momento angular.

METODOLOGIA DE ENSINO

A aula será expositiva-dialógica, onde serão desenvolvidas atividades práticas no Laboratório de Física Aplicada. Como recursos, poderão ser utilizados o quadro branco, o projetor de slides, equipamentos e instrumentos do laboratório.

AVALIAÇÃO

Trabalhos dirigidos – Desenvolvimento atividades práticas no laboratório e elaboração de relatórios, levando em consideração a clareza na elaboração de trabalhos em função do domínio dos conhecimentos científicos adquiridos;

Avaliação escrita sobre os conteúdos ministrados, tendo como premissas o planejamento, organização e coerência de ideias em função do domínio dos conhecimentos científicos adquiridos;

BIBLIOGRAFIA BÁSICA

HALLIDAY, D, RESNICK, R. **Fundamentos de Física, Volume 1**, 9ª edição, ED. LTC, Rio de Janeiro, 2012.

HALLIDAY, D, RESNICK, R. **Fundamentos de Física, Volume 2,** 9ª edição, ED. LTC, Rio de Janeiro, 2012.

SEARS e Zemansky Física / H. D. Yong, R. A Freedman, **Física I,** 12ª edição, Ed. Addison Wesley, 2008.

BIBLIOGRAFIA COMPLEMENTAR

A. ISAACS, Dictionary of Physics, 5^a edição, Oxford, New York, 2005.

P. A. TIPLER, **Física para Cientista e Engenheiros** - Volume 2, Volume 2, Ed. LTC, Rio de Janeiro, 2009.

TAVARES, Armando Dias. **Mecânica Física: Abordagem Experimental e Teórica**. LTC, Rio de Janeiro, 2014.

P. A. TIPLER, **Física para Cientistas e Engenheiros** - Volume 1, 6ª edição, Ed. LTC, Rio de Janeiro, 2009.

SEARS e Zemansky Física / H. D. Yong, R. A Freedman, **Física II**, 12^a edição, Ed. Addison Wesley, 2008.

Coordenador do Curso	Setor Pedagógico